首页> 外文OA文献 >Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence
【2h】

Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence

机译:几乎每个简单类型的Lambda-Term都有一个长的Beta减少序列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well known that the length of a beta-reduction sequence of a simplytyped lambda-term of order k can be huge; it is as large as k-fold exponentialin the size of the lambda-term in the worst case. We consider the followingrelevant question about quantitative properties, instead of the worst case: howmany simply typed lambda-terms have very long reduction sequences? We provide apartial answer to this question, by showing that asymptotically almost everysimply typed lambda-term of order k has a reduction sequence as long as(k-1)-fold exponential in the term size, under the assumption that the arity offunctions and the number of variables that may occur in every subterm arebounded above by a constant. To prove it, we have extended the infinite monkeytheorem for strings to a parametrized one for regular tree languages, which maybe of independent interest. The work has been motivated by quantitativeanalysis of the complexity of higher-order model checking.
机译:众所周知,简单的λ阶λ项的β-还原序列的长度可能很大;在最坏的情况下,它在lambda项的大小中相当于k倍指数。我们考虑以下有关定量性质的问题,而不是最坏的情况:几个简单键入的lambda项有很长的归约序列?通过证明在函数和矩阵的均一性的假设下,几乎渐近的几乎所有类型的k阶lambda项在项大小上只要(k-1)倍指数都有一个减少序列,我们提供了对该问题的部分答案。每个子项中可能出现的变量的数量在上面被常数限制。为了证明这一点,我们将字符串的无穷大猴子定理扩展到常规树语言的参数化定理,这也许是独立的。通过对高阶模型检查的复杂性进行定量分析来推动这项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号